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Abstract. In this papa we study the quantum Clifford-Hopf algebras CHq(D)  for even 
dimensions, D.  and obtain their intertwiner R-"ices, which are elliptic solutions to ;he 
Yang-Baxter equation. In the trigonomettic limit of these new algebras we find the possibility 
of connecting with extended supersymmetry. We also analyse the corresponding spin-chain 
Hamiltonian, which leads to Suzuki's generalized XY model: 

- 

1. Introduction 

The quantum group smcture plays an important role in the study of two-dimensional 
integrable models because R-matrices intertwining between diferent irreps of a quantum 
group provide solutions to the Yang-Baxter equation. Two &portant families of integrable 
models are the 6-vertex and 8-vertex solutions to the Yang-Baxter equation [l]. Whereas the 
6-vertex solutions are intertwiners R-matrices for Uq(s1(2)), a quantum eoup interpretation 
for the elliptic 8:vertex family is not yet known. 

Nevertheless, the 8-vertex regime is well understood for the pmticular class of solutions 
to the Yang-Baxter equation satisfying the free-fermion condition 121 

. (1) 

- 

R" "( u~ I R , ,  I 1  (U) + ~;;(u)~giu) = R$(u)R;(u) + R,O:WR:,OW. 

Indeed, a quantum group-lie structure has been found recently for the most general free 
fermionic elliptic 8-vertex model in a magnetic field. The matrix of its Boltzmann weights 
[3,4] acts -as intertwiner for the affinization of a quantum Hopf deformation of the Clifford 
algebra in two dimensions, noted CHq(2) [5 ] .  

A major interest of the free fermionic solutions to the Yang-Baxter equation is in their 
connection, in'the 6-vertex limit (R$(u) = RF = 0). with N = 2 supersymmetric integrable 
models. The free fermionic 6-vertex solutions are given by the R-matrix intertwiners 
between nilpotent irreps of the Hopf algebra U,(d(2)),~with c4 = 1 (the nilpotent imps 
are a special case of the cyclic representations that enlarge the representation theory of 
U,(sZ(2)) when 6 is a root ofunity). In the trigonometric limit the R-matix for CHq(2) 
becomes that for U,(sl(2)), 

In this article we construct the quantum Clifford-Hopf algebras CHq(D) for even 
dimensions D > 2, generalizing the results in [5]. .This general case is interesting because 
it yields one of the ;&e examples of elliptic R-matrices. The R-matrices we find admit 
several spectral parameters, due to the shucture of CH,(D) as a Drinfeld Gist [6] of the 
tensor product of several copies of CHq(2). The possibility of connecting with extended 
supersymmetry in the trigonometric limit of CX,(D),  &d a related supersymmetric 
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integrable model are analysed in section 3. Finally, in section 4, we study the spin-chain 
Hamiltonian associated with these algebras. The model obtained represents several XY 
Heisenberg chains in an external magnetic field [7] coupled among them in a simple way. 
Though the coupling is simple it can be a starting point to get a quantum group structure 
for more complicated models built through the coupling of two XY or XX models (Bariev 
model [8] ,  onedimensional Hubbard model). The last part of this section is devoted to 
showing the equivalence of this model-under some restrictions-with a generalized XY 
model proposed by Suwki in relation to the two-dimensional dimer problem [9]. 

2. The quantum CIBord algebra 

A Clifford algebra C(q)  related to a quadratic form or metric q is the associative algebra 
generated by the elements [rp}i=l,  which satisfy 

~ r ~ , r ~ = z q ~ ~ i  p , ~ = i  ,..., D. (2) 

The quantum Clifford-Hopf algebra CH,(D) [5] is a generalization and quantum 
deformation of C(q), generated by elements r,, rD+1 (the analogue of ys for the Dirac 
matrices) and new central elements Ep (p = 1, . . . , D) verifying 

(3) vp, rVi = o /I + v [ rp3 rD+ll = o 
[E,, r,l= [Eps  r ~ + i l =  [EL,  E,] = 0 VN%., U .  

The charges E p  result from elevating the components of the metric q from numbers to 
operators. The generator ro+I will play a similar role to (-l)F, where F is the fermion 
number operator. Although for the standard Clifford algebra D represents the dimension of 
the spacetime, in our case D is only a parameter labelling (3). The algebra CH,(D) is a 
Hopf algebra with the following co-multiplication A, antipode S and co-unit E: 

A(EJ  = Ep 8 1 + 1 8  Ep 
E 2  A(rp)  = 4 "' rD+I 8 rp + 

A ( r D + i )  = r D + i @  r D + i  s ( r D t 1 )  = rD+I E ( r D t 1 )  = 1.  

S(EJ = - E p  c ( E J  = 0 

s(rp) = rprDf1 = o (4) 8 q-5/2 

The irreducible representations of CH,(D) are in one-to-one correspondence with those 
of the Cliiord algebra C ( q )  for all possible signatures of the metric q, in D (D even) or 
D+ 1 (D odd) dimensions, respectively. They are labelled by complex parameters [A,,):=l, 
the eigenvalues of the Casimir operators Kp = 4 5 .  From now on we restrict ourselves to 
the case D even, D = 2 M .  

The irreps of CH,(ZM) are isomorphic to the tensor product of M CHq(2) irreps, being 
their dimension Z M .  Thus, a basis for CH,(2M) can be obtained from the CH,(2)@M 
generators as follows (ye, E,((I = 1.2). y3 E CHJ2)): 

r2(n-l)+u = y3 8 ... 8% o y ,  8 1 8  ..-8 1 n) n =  1 ,.... M (I = 1,2 
(5) 

E z ( n - 1 ) ~  = 1 8 ...8 1 8  E- @ 18 ... 8 I rD+I  = y3 @...OM. 
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The Hopf algebra~CH,(ZM) is related to the tensor product CHq(2JmM by a Dnnfeld 
twist B [6] 

..~ . 

where the operator B E CHq(2)mM 8 CHq(2)@" acting on the tensor product of two 
CHq(2M) irreps is defined by 

where f = 0 (boson), 1 (fermion) is the. fermion number for the two "tors in a CH,(2) 
irrep. The reason for introducing the operator B in formula (6) is that the cc-multiplication 
in CHq(2)@" treats each factor CHq(2) separately. This can be represented by a twist 
between the CHq(2) pieces of a C H q ( 2 M ) ~  irrep. Since one of the vectors in a CHq(2) 
irrep behaves as a fermion, this twist has fie effect of introducing some signs that .we 
represent by the operator B (figure 1). 

Figure 1. Graphical rrpresenhtion of the expression (6) for CHq(4); (a.  i) denote the vectors 
in a CHq(2)@* irrep, index a corresponding to the first CHq(2) and i to the second. 

Next we introduce a sort of affinization of the Hopf algebra CH,(D). The generators 
of this new algebra CH,(D) are rj); E$) (i = 0, 1) and rD+l, verifying (3) and (4) for 
each value of i .  We also impose that the anticommutator [rt).'rf)] belong to the centre 
of CH,(D) Vp, U. 

We now give the explicit realization of CHq(2). It is a useful example, agd it will 
provide us with the building blocks for any D. A two-dimensional irrep q of CHq(2) is 
labelled by { = ( z ,  A,, Az) E C3 and reads as follows: 
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where e@.) = cn(u.)+isn(u.) is the elliptic exponential of modulus k,, ei =e(+;), sn; = 
sn(@;) (i = 1.2) and u., +; are elliptic angles depending on the labels Cy) (see E51 for 
details). 
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There is a constraint on the irrep labels so that (12) is indeed their intertwiner 

All the RgAq(2j matrices are independent and commute among them. It's remarkable that 
the spectral curve (13) of irreps that admit an intertwiner is parameaized by M independent 
elliptic moduli k,. Indeed, some of them can be in the elliptic regime and others in the 
trigonometric (k=O). The matrix RcHq(2M) can be thought of as the scattering matrix for 
objects composed of M different kinds of particles. There is real interaction when two equal 
particles scatter from each other, given by R$Aq(2); otherwise there is only a sign coming 
from their statistics and represented by the operator B (figure 2). 

Figure 2. Graphical representation of the CHq(4)  R-matsix 

Finally, note that the R-matrix (12) coincides with the Boltzmann weights for the most 
general 8-vertex free-fermionic solution to the Yang-Baxter equation in non-zero mabetic 
field [3,4]. 

3. Extended supersymmetry 

In order to analyse the connection of CH,(ZM) with supersymmetry algebras,  we^ will 
study the limit in which the R-matrix (12) becomes trigonometric. Let us consider first the 
case D = 2 in detail. This case turns out to be related to an N = 2 (two,supersymmehy 
charges) integrable Ginzburg-Landau model. We shall also give a heuristic motivation for 
the construction of the Hopf algebra CHq(2) based on its trigonometric &vertex limit. 

The 6-vertex free fermionic solutions- are given by the intertwiner R-matrix between 
nilpotent irreps of u,(sr(2)), c4 = 1 (+ E = i)  [IO]. In a U,=i(d(2)) nilpotent irrep 
the values of the special Casimirs are Q: = 0 (Ql = S*6*H'2) and K 2  = A* arbitrary 
(K = E");  namely, they are the'highest-weight cases of ihe cyclic imps. Furthermore when 
c4 = 1 the &commutator [a+, Q-] also belongs to the centre, suggesting the connection 
with a Clifford algebra through the mixing of the positive and negative root generators Qi. 
The total fermion number is conserved in the 6-vertex solutions to the Yang-Baxter equation, 
but it is not in the elliptic regime. Hence a non-trivial mixing is needed to represent the 

A 

h 
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elliptic regime. The Hopf algebra CHq(2) assigns different central elements [Ell, , [E& 
to the square of the generators y ~ ,  fi respectively, in such a way that the mixing can only 
be undone (trigonometric limit) when El = Ez = E. It implies k = 0 in (13). For the 
affine CHq(2) this limit leads to U,=i(sl(Z)) (this statement is only rigurous for the affine 
case): i.e. RcH,(z~ becomes the R-matrix intertwiner for U,=i(sl(2)), provided the labels 
of the two algebras are related by A = q E .  

Using the generators &,a* E U,=i(sl(2)), we can define an N = 2 supersymmetry 
algebra with topological extension Tb [l l ,  121 

- 
A 

h 

Q2 -- 2 * - Q, = {Q*,Z*I = O  

IQ*.zTl = 2 T i  ;ILI=[EI, (14) 

[e+, 12-1 = 2mz2 
- -  {e+, Q-I = Zmz-' 

satisfying the Bogomolnyi bound I T* I = m. The free fermionic condition (1) ensures the 
N = 2 invariance of the R-matrix. Moreover, the N = 2 part of the scattering matrix for 
the solitons of the Ginzburg-Landau superpotential W = Xn+'/(n + 1) - j3X [13] is given 
by R-matrices of U~(gl(l.1)) with &" = 1 [14], or equivalently by those of U,=;(d(2)) 
between nilpotent imps with labels h = @ [15]. 

The Ginzburg-Landau models have a particular importance in the context of N = 2 
supersymmetry, since they allow one to classify a wide variety of N = 2 superconfomal 
field theories [16]. Of great interest are the relevant perturbations of these theories giving 
massive integrable models, as happens for the superpotential W ( X )  = X"+'/(n + 1) - j3X. 
We would now l i e  to make plausible in this context why the supersymmetry algebra (14) 
has a non-trivial co-multiplication. In a N = 2 Ginzburg-Landau model, the superpotential 
enters explicitly in the SUSY commutators through 

h 

AW = W ( X j )  - W ( X i )  

with X(-CO) = X i ,  X(m) = X j  and X i ,  X j  minima of W.  Let's call K(i,i+t) the soliton 
going from X i  to Xj, where I = j - i. It is straightforward to see that AW depends on both 
l and i. Naively, the dependence on i was not expected since all the solitons with the same 
l are equivalent. For the superpotential proposed it is possible to obtain a supersymmehic 
algebra without this dependence, at the price of reabsorbing it in a non-trivial quantum 
group comultiplication 

On the other hand, it is worth noting the relation of (16) with the fermion number of 
the solitons. In the solitonic sectors, the fermion number operator acquires a fractional 
constant piece due to the interaction of the fermionic degrees of freedom with the solitonic 
background. The fractional piece of the fermion number in a soliton sector K(;J),  is given 
by [17,181 
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The relation with CHq(2)  labels is q" = eias/". Therefore~q'"~ in (16) would be the 
analogue of e*nF, where F is the fermion number operator. This interpretation fails for 
A(&), where the signs are interchanged, leading, in fact, to a quantum group structure 
instead of a Lie superalgebra. 

Let us return to building extended supersymmetry algebras from the general CH,(ZMj, 
in the same sense as above. The trigonometric limit of CHq(2M) is obtained as an 
independent trigonometric limit in each CHq(2) piece. Then the affine Hopf algebra 
C H q ( 2 M )  becomes, in essence, the anticommutingknsor product of M Ue=i(s1(2)) factors, 
each with its own spectral parameter. Imposing that the eigenvalues of all the central charges 
Ei and the spectral parameters zj (i = 1,. . . , M )  coincide, we get M copies of the same 
structure (14), (Q, , Q ,  , T, - T&. Therefore we find an N ~ =  2M s super symmetry 
algebrawith M topological charges. Indeed, the dimension of a C.Hq(2) irrep is 2M,  as is 
needed to saturate the Bogomolnyi bound I T t )  I=I k I= m. 

Besides, we have seen that the CHq(2M) irreps can be thought of as collections of M 
independent solitons CHq(2).  Let us consider &e more general trigonome&c limit with 
equal values of the central charges EL,  but arbitrary spectral parameters zi (i = 1, . . . , M). 
Then the charges 

II 

h_ 

h 
. .  A '  

(i) -(i) (r) - 

- - 

verify the commutation relations of N = 2 supersymmetry (14). In fact, (14) is satisfied 
even if we allow different central charges Ei . However, in this case the comultiplication 
doesn't preserve the expression (18) of QZ,ZZ. 

4. Generalized XY spin chains 

The quantum group structure plays an important role in two-dimensional statistical models, 
since R-matrix intertwiners provide systematic solutions to the integrability condition, the 
Yang-Baxter equation. In this way integrable models can be built associated with a quantum 
group, allowing one to connect integrability with an underlying symmetry principle. As 
noted above, the intertwiner R-matrix for the Clifford-Hopf algebra CH,(2) reproduces 
the 8-vertex free-fermion model in-magnetic field. In this section we will analyse the 
model defined by the algebras CH,(D) for general D = 2M. Following the transfer- 
matrix method, the study of a two-dimensional statistical model is equivalent to that of 
its corresponding spin  chain.^ The L-site Hamiltonian for a periodic chain defined by the 
CHq(2M) Hopf algebras is given~by (provided that R(0) = 1) 

- 
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where U; (a = x ,  y, z n = 1,. . . , M) are. M sets of Pauli matrices, and the constants 
J:, J;. h" depend on the quantum labels of the irreps whose intertwiner is R 

J; = 1 + rn 
P = k,sn(@") 

.r; = 1 - rn n = 1,. . ., M 
(20) 

h" = 2cn(@"). 

The requirement R(0) = 1 implies @; = @! = v. 
The Hamiltonian (19) can be diagonalized through a Jordan-Wigner transformation 

and its excitations behave as free fermions (massless when J: = J J ,  massive otherwise). 
This model provides M groups of Pauli matrices (a = x, y, z) for each site j on 
the chain, so it behaves as having M layers with an XY model defined in each layer. 
The factors (U:,? . . . U ~ U ~ , ~ + ~  . . .ut&) make the fermionic excitations on different layers 
anticommute. Thus the algebra CHq(2M)  provides a way to put different non-interacting 
fermions in a chain with a quantum group interpretation. 

When M = 1, H reduces to the Hamiltonian of an XY Heisenberg chain in an external 
magnetic field h, that is the spin chain associated with the 8-vertex freefermion model [7]: 

The aim of this section is to show that the above model is equivalent under some 
restrictions to the generalized integrable XY chain proposed and solved in [9], 

K L' L' 

&=I j = l  j=I 
fi= - ~ ~ ( j ! , , j ~ . z , j + k  + j;Uy.juy,j+&z.j+i . . . u z . j + k - ~  + h C u z . j  (22) 

finding in this way a quantum group smcture for this integrable model. The Hamiltonian 
(22) can also be diagonalized with a Jordan-Wigner transformation and its quasi-particles 
behave as free fermions. The main application of the generalized XY model is the proilem 
of covering a surface with horizontal and vertical dimers. Indeed, the ground state of H for 
a particular choice of parameters reproduces the two-dimensional pure dimer problem [9], 
first solved in terms of a Haffian [19]. I 

To see. the relation between H and H, let us choose identical XY models on each layer 
of the former chain 

J: = J, J" y -  - J h " = h  n = l ,  ..., M (23) 

and rearrange the spin labels to form a single-layer chain 

~ ~ ~ ~ = c r ~ , j + ~  n = l ,  ..., M a = x , y , z .  (W 

e= -J,SM,~ J 2- Y -- J,GM,x k = 1 ,..., K. (25) 

Then the Hamiltonians H and E? coincide if in the latter we set 

The general I? (22) is obtained by adding Hamiltonians H(') derived from CHq(2M) 
R-mahices. The fact that this sum is also solvable relies on setting equal parameters 
in each X") (this is the same condition that Ieads to N = 2M supersymmetry in the 
trigonometric limit of CHq(2M)) .  'Therefore, the affine quantum Clifford-Hopf algebras 
C H , ( 2 M )  encode the hidden quantum group for the generalized XY spin chain (22). 
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5. Comments 

We have studied the quantum Clifford algebras CHq(2M)  in connection with extended 
supersymmetry and with statistical integrable models. 

It is worth noting that the Hamiltonian derived from CHq(4) in the trigonomemc regime 
and without magnetic field is the limiting case U + co of the two-layer chain [8 ] :  

A 

__ 

The coupling between the two layers in this model implies real interaction, so the 
excitations are not free fermions, and the ground state presents spontaneous magnetization (if 
U # 0, co). It can still be solved by Bethe ansatz techniques, but an R-matrix interpretation 
for it is not known. The algebra CHq(4) gives us a simple way of coupling two XY models. 
Perhaps it would be possible to twist (may be in a way related to a quantum deformation 
proposed recently for the Clifford algebras [20] )  and break the full set of generators to a 
shorter set giving a quantum group structure for this model. 

We have built extended supersymtnenic algebras from the CHq(2M)  generators in the 
higonomehic limit. The Clifford-Hopf algebras can be thought of as elliptic generalizations 
of supersymmetry (the anticommutators of charges that give the momentum P and get 
deformed in the elliptic case, but are still central elements). It would be interesting to 
analyse what deformation of the Poincar6 group one gets in such a way. 
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