Quantum Clifford-Hopf algebras for even dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 27845
(http://iopscience.iop.org/0305-4470/27/3/025)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 23:02

Please note that terms and conditions apply.

Quantum Clifford-Hopf algebras for even dimensions

E López
Instituto de Matemáticas y Física Fundamental, CSIC, Serrano 123, E-28006 Madrid, Spain

Received 28 June 1993, in final form 8 November 1993

Abstract

In this paper we study the quantum Clifford-Hopf algebras $\widehat{C_{q}(D)}$ for even dimensions, D, and obtain their intertwiner R-matrices, which are elliptic solutions to the Yang-Baxter equation. In the trigonometric limit of these new algebras we find the possibility of connecting with extended supersymmetry. We also analyse the corresponding spin-chain Hamiltonian, which leads to Suzuki's generalized $X Y$ model:

1. Introduction

The quantum group structure plays an important role in the study of two-dimensional integrable models because R-matrices intertwining between diferent irreps of a quantum group provide solutions to the Yang-Baxter equation. Two important families of integrable models are the 6 -vertex and 8 -vertex solutions to the Yang-Baxter equation [1]. Whereas the 6-vertex solutions are intertwiners R-matrices for $U_{q}(\widehat{s l(2)})$, a quiantum group interpretation for the elliptic 8 -vertex family is not yet known.

Nevertheless, the 8 -vertex regime is well understood for the particular class of solutions to the Yang-Baxter equation satisfying the free-fermion condition [2]

$$
\begin{equation*}
R_{00}^{00}(u) R_{11}^{11}(u)+R_{01}^{10}(u) R_{10}^{01}(u)=R_{00}^{11}(u) R_{00}^{11}(u)+R_{01}^{01}(u) R_{10}^{10}(u) \tag{1}
\end{equation*}
$$

Indeed, a quantum group-like structure has been found recently for the most general free fermionic elliptic 8 -vertex model in a magnetic field. The matrix of its Boltzmann weights $[3,4]$ acts as intertwiner for the affinization of a quantum Hopf deformation of the Clifford algebra in two dimensions, noted $\widehat{\mathrm{CH}_{q}(2)}$ [5].

A major interest of the free fermionic solutions to the Yang-Baxter equation is in their connection, in the 6 -vertex limit ($R_{00}^{11}(u)=R_{11}^{00}=0$), with $N=2$ supersymmetric integrable models. The free fermionic 6 -vertex solutions are given by the R-matrix intertwiners between nilpotent irreps of the Hopf algebra $U_{\epsilon}(\widehat{s l(2)})$, with $\epsilon^{4}=1$ (the nilpotent irreps are a special case of the cyclic representations that enlarge the representation theory of $U_{\epsilon}(\widehat{s l(2)})$ when ϵ is a root of unity). In the trigonometric limit the R-matrix for $\widehat{C H_{q}(2)}$ becomes that for $U_{\epsilon}(\widehat{s l(2)}), \epsilon^{4}=1$.

In this article we construct the quantum Clifford-Hopf algebras $\widehat{C H_{q}(D)}$ for even dimensions $D \geqslant 2$, generalizing the results in [5]. This general case is interesting because it yields one of the rare examples of elliptic R-matrices. The R-matrices we find admit several spectral parameters, due to the structure of $\widehat{\mathrm{H}_{q}(D)}$ as a Drinfeld twist [6] of the tensor product of several copies of $\widehat{\mathrm{CH}_{q}(2)}$. The possibility of connecting with extended supersymmetry in the trigonometric limit of $\widehat{C H_{q}(D)}$, and a related supersymmetric
integrable model are analysed in section 3. Finally, in section 4, we study the spin-chain Hamiltonian associated with these algebras. The model obtained represents several $X Y$ Heisenberg chains in an external magnetic field [7] coupled among them in a simple way. Though the coupling is simple it can be a starting point to get a quantum group structure for more complicated models built through the coupling of two $X Y$ or $X X$ models (Bariev model [8], one-dimensional Hubbard model). The last part of this section is devoted to showing the equivalence of this model-under some restrictions-with a generalized $X Y$ model proposed by Suzuki in relation to the two-dimensional dimer problem [9].

2. The quantum Clifford algebra

A Clifford algebra $C(\eta)$ related to a quadratic form or metric η is the associative algebra generated by the elements $\left\{\Gamma_{\mu}\right\}_{\mu=1}^{D}$, which satisfy

$$
\begin{equation*}
\left\{\Gamma_{\mu}, \Gamma_{\nu}\right\}=2 \eta_{\mu v} 1 \quad \mu, v=1, \ldots, D \tag{2}
\end{equation*}
$$

The quantum Clifford-Hopf algebra $C H_{q}(D)$ [5] is a generalization and quantum deformation of $C(\eta)$, generated by elements $\Gamma_{\mu}, \Gamma_{D+1}$ (the analogue of γ_{5} for the Dirac matrices) and new central elements $E_{\mu}(\mu=1, \ldots, D)$ verifying

$$
\begin{align*}
& \Gamma_{\mu}^{2}=\frac{q^{E_{\mu}}-q^{-E_{\mu}}}{q-q^{-1}} \quad \Gamma_{D+1}^{2}=\mathbf{1} \\
& \left\{\Gamma_{\mu}, \Gamma_{\nu}\right\}=0 \quad \mu \neq \nu \quad\left\{\Gamma_{\mu}, \Gamma_{D+1}\right\}=0 \tag{3}\\
& {\left[E_{\mu}, \Gamma_{\nu}\right]=\left[E_{\mu}, \Gamma_{D+1}\right]=\left[E_{\mu}, E_{\nu}\right]=0 \quad \forall \mu, \nu .}
\end{align*}
$$

The charges E_{μ} result from elevating the components of the metric η from numbers to operators. The generator Γ_{D+1} will play a similar role to $(-1)^{F}$, where F is the fermion number operator. Although for the standard Clifford algebra D represents the dimension of the spacetime, in our case D is only a parameter labelling (3). The algebra $C H_{q}(D)$ is a Hopf algebra with the following co-multiplication Δ, antipode S and co-unit ϵ :

$$
\begin{array}{lll}
\Delta\left(E_{\mu}\right)=E_{\mu} \otimes 1+1 \otimes E_{\mu} & S\left(E_{\mu}\right)=-E_{\mu} & \epsilon\left(E_{\mu}\right)=0 \\
\Delta\left(\Gamma_{\mu}\right)=q^{E_{\mu} / 2} \Gamma_{D+1} \otimes \Gamma_{\mu}+\Gamma_{\mu} \otimes q^{-E_{\mu} / 2} & S\left(\Gamma_{\mu}\right)=\Gamma_{\mu} \Gamma_{D+1} & \epsilon\left(\Gamma_{\mu}\right)=0 \tag{4}\\
\Delta\left(\Gamma_{D+1}\right)=\Gamma_{D+1} \otimes \Gamma_{D+1} & S\left(\Gamma_{D+1}\right)=\Gamma_{D+1} & \epsilon\left(\Gamma_{D+1}\right)=1 .
\end{array}
$$

The irreducible representations of $\mathrm{CH}_{q}(D)$ are in one-to-one correspondence with those of the Clifford algebra $C(\eta)$ for all possible signatures of the metric η, in $D(D$ even) or $D+1$ (D odd) dimensions, respectively. They are labelled by complex parameters $\left\{\lambda_{\mu}\right\}_{\mu=1}^{D}$, the eigenvalues of the Casimir operators $K_{\mu}=q^{E_{\mu}}$. From now on we restrict ourselves to the case D even, $D=2 M$.

The irreps of $\mathrm{CH}_{q}(2 \mathrm{M})$ are isomorphic to the tensor product of $M C H_{q}$ (2) irreps, being their dimension 2^{M}. Thus, a basis for $\mathrm{CH}_{q}(2 M)$ can be obtained from the $C H_{q}(2)^{\otimes M}$ generators as follows ($\gamma_{\alpha}, E_{\alpha}(\alpha=1,2), \gamma_{3} \in C H_{q}(2)$):

$$
\begin{array}{ll}
\Gamma_{2(n-1)+\alpha}=\gamma_{3} \otimes \cdots \otimes \gamma_{3} \otimes \stackrel{n)}{\gamma_{\alpha}} \otimes 1 \otimes \cdots \otimes 1 & n=1, \ldots, M \quad \alpha=1,2 \tag{5}\\
E_{2(n-1)+\alpha}=1 \otimes \cdots \otimes 1 \otimes E_{\alpha} \otimes 1 \otimes \cdots \otimes 1 & \Gamma_{D+1}=\gamma_{3} \otimes \cdots \otimes \gamma_{3} .
\end{array}
$$

The Hopf algebra $C H_{q}(2 M)$ is related to the tensor product $C H_{q}(2)^{\otimes M}$ by a Drinfeld twist B [6]

$$
\begin{equation*}
\Delta_{C H_{q}(2 M)}(g)=B \Delta_{C H_{q}(2) \otimes M}(a) B^{-1} \quad \forall g \in C H_{q}(2 M) \tag{6}
\end{equation*}
$$

where the operator $B \in C H_{q}(2)^{\otimes M} \otimes C H_{q}(2)^{\otimes M}$ acting on the tensor product of two $\mathrm{CH}_{q}(2 M)$ irreps is defined by
$B=(-1)^{F * F} \quad F * F=\sum_{1 \leqslant j<i \leqslant M}\left(1 \otimes \cdots \otimes{ }_{f}^{i)} \otimes \cdots \otimes 1\right) \otimes(1 \otimes \cdots \otimes f \otimes \cdots \otimes 1)$
where $f=0$ (boson), 1 (fermion) is the fermion number for the two vectors in a $\mathrm{CH}_{q}(2)$ irrep. The reason for introducing the operator B in formula (6) is that the co-multiplication in $\mathrm{CH}_{q}(2)^{\otimes M}$ treats each factor $\mathrm{CH}_{q}(2)$ separately. This can be represented by a twist between the $\mathrm{CH}_{q}(2)$ pieces of a $\mathrm{CH}_{q}(2 M)$ irrep. Since one of the vectors in a $\mathrm{CH}_{q}(2)$ irrep behaves as a fermion, this twist has the effect of introducing some signs that we represent by the operator B (figure 1).

Figure 1. Graphical representation of the expression (6) for $\mathrm{CH}_{q}(4)$; (a, i) denote the vectors in a $C H_{q}(2)^{\otimes 2}$ irrep, index a corresponding to the first $C H_{q}(2)$ and i to the second.

Next we introduce a sort of affinization of the Hopf algebra $\mathrm{CH}_{q}(D)$. The generators of this new algebra $C \widehat{H_{q}(D)}$ are $\Gamma_{\mu}^{(i)}, E_{\mu}^{(i)}(i=0,1)$ and Γ_{D+1}, verifying (3) and (4) for each value of i. We also impose that the anticommutator $\left\{\Gamma_{\mu}^{(1)}, \Gamma_{\nu}^{(2)}\right\}$ belong to the centre of $\widehat{C H_{q}(D)} \forall \mu, \nu$.

We now give the explicit realization of $\overline{\mathrm{CH}_{q}(2)}$. It is a useful example, and it will provide us with the building blocks for any D. A two-dimensional irrep π_{ξ} of $\widehat{C H_{q}(2)}$ is labelled by $\xi=\left(z, \lambda_{1}, \lambda_{2}\right) \in C^{3}$ and reads as follows:

$$
\begin{aligned}
& \pi_{\xi}\left(\gamma_{1}^{(0)}\right)=\left(\frac{\lambda_{1}^{-1}-\lambda_{1}}{q-q^{-1}}\right)^{1 / 2}\left(\begin{array}{cc}
0 & z^{-1} \\
z & 0
\end{array}\right) \quad \pi_{\xi}\left(\gamma_{1}^{(1)}\right)=\left(\frac{\lambda_{1}-\lambda_{1}^{-1}}{q-q^{-1}}\right)^{1 / 2}\left(\begin{array}{cc}
0 & z \\
z^{-1} & 0
\end{array}\right) \\
& \pi_{\xi}\left(\gamma_{2}^{(0)}\right)=\left(\frac{\lambda_{2}^{-1}-\lambda_{2}}{q-q^{-1}}\right)^{1 / 2}\left(\begin{array}{cc}
0 & -\mathrm{i} z^{-1} \\
\mathrm{i} z & 0
\end{array}\right) \quad \pi_{\xi}\left(\gamma_{2}^{(1)}\right)=\left(\frac{\lambda_{2}-\lambda_{2}^{-1}}{q-q^{-1}}\right)^{1 / 2}\left(\begin{array}{cc}
0 & -\mathrm{i} z \\
\mathrm{i} z^{-1} & 0
\end{array}\right) \\
& \pi_{\xi}\left(\gamma_{3}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& \pi_{\xi}\left(q^{E_{1}^{(0)}}\right)=\lambda_{1}^{-1} \quad \pi_{\xi}\left(q^{E_{1}^{(1)}}\right)=\lambda_{1} \\
& \pi_{\xi}\left(q^{E_{2}^{(0)}}\right)=\lambda_{2}^{-1} \quad \pi_{\xi}\left(q^{E_{2}^{(1)}}\right)=\lambda_{2} .
\end{aligned}
$$

For the affine $C \widehat{H_{q}(2 M)}$ we can define a straightforward generalization of (5). It allows us to introduce M different affinization parameters $\left\{z_{n}\right\}_{n=1}^{M}$, one for each $\widehat{C H_{q}(2)}$ piece:

$$
\begin{aligned}
& \Gamma_{2(n-1)+\alpha}^{(i)}=\gamma_{3} \otimes \cdots \otimes \gamma_{3} \otimes \gamma_{\alpha}^{(i)} \otimes 1 \otimes \cdots \otimes 1 \quad n=1, \ldots, M \quad \alpha=1,2 \quad i=0,1 \\
& E_{2(n-1)+\alpha}^{(i)}=1 \otimes \cdots \otimes 1 \otimes E_{\alpha}^{(i)} \otimes 1 \otimes \cdots \otimes 1 \\
& \Gamma_{D+1}=\gamma_{3} \otimes \cdots \otimes \gamma_{3} .
\end{aligned}
$$

The intertwiner R-matrix for two irreps with labels $\xi=\left\{z_{n}, \lambda_{2 n-1}, \lambda_{2 n}\right\}_{n=1}^{M}$ is defined by the condition

$$
\begin{equation*}
R_{5_{1} \xi_{2}} \Delta_{\xi_{1} \xi_{2}}(g)=\Delta_{\xi_{2} \xi_{1}}(g) R_{\xi_{1}, \xi_{2}} \quad \forall g \in C \widehat{H_{q}(2 M)} \tag{10}
\end{equation*}
$$

with $\Delta_{\xi_{1} \xi_{2}}=\pi_{\xi_{1}} \otimes \pi_{\xi_{2}}(\Delta)$. Since (6) remains true for any element $g \in C \widehat{H_{q}(2 M)}$, the intertwiner R-matrix between two irreps (which furthermore satisfies the Yang-Baxter equation) is given by [6]

$$
\begin{align*}
& R_{C H_{q}(2 M)}\left(u_{1}, \ldots, u_{M}\right)=B R_{C H_{q}(2)^{M M}}\left(u_{1}, \ldots, u_{M}\right) B^{-1} \\
& R_{C H_{q}(2)^{\otimes M}}\left(u_{1}, \ldots, u_{M}\right)=R_{C H_{q}(2)}^{(1)}\left(u_{1}\right) \ldots R_{C H_{q}(2)}^{(M)}\left(u_{M}\right) . \tag{11}
\end{align*}
$$

The matrices $R_{C R_{q}(2)}^{(n)}=R_{\xi_{1}(n) \xi_{2}^{(n)}}\left(\xi^{(n)}=\left(z_{n}, \lambda_{2 n-1}, \lambda_{2 n}\right)\right)$ are the $\widehat{C H_{q}(2)}$ intertwiners

$$
\begin{align*}
& R_{00}^{00}=1-e\left(u_{n}\right) e_{1} e_{2} \quad R_{11}^{11}=e\left(u_{n}\right)-e_{1} e_{2} \\
& R_{01}^{10}=e_{1}-e\left(u_{n}\right) e_{2} \quad R_{10}^{01}=e_{2}-e\left(u_{n}\right) e_{1} \tag{12}\\
& R_{01}^{01}=R_{10}^{10}=\left(e_{1} \mathrm{sn}_{1}\right)^{1 / 2}\left(e_{2} \mathrm{sn}_{2}\right)^{1 / 2}\left(1-e\left(u_{n}\right)\right) / \mathrm{sn}\left(u_{n} / 2\right) \\
& R_{00}^{11}=R_{11}^{00}=-\mathrm{i} k\left(e_{1} \mathrm{sn}_{1}\right)^{1 / 2}\left(e_{2} \mathrm{sn}_{2}\right)^{1 / 2}\left(1+e\left(u_{n}\right)\right) \operatorname{sn}\left(u_{n} / 2\right)
\end{align*}
$$

where $e\left(u_{n}\right)=\mathrm{cn}\left(u_{n}\right)+\mathrm{i} \operatorname{sn}\left(u_{n}\right)$ is the elliptic exponential of modulus $k_{n}, e_{i}=e\left(\psi_{i}^{n}\right), \mathrm{sn}_{i}=$ $\operatorname{sn}\left(\psi_{i}^{n}\right)(i=1,2)$ and u_{n}, ψ_{i}^{n} are elliptic angles depending on the labels $\xi_{i}^{(n)}$ (see [5] for details).

There is a constraint on the irrep labels so that (12) is indeed their intertwiner

$$
\begin{equation*}
\frac{2\left(\lambda_{2 n-1}-\lambda_{2 n}\right)}{\left(1-\lambda_{2 n-1}^{2}\right)^{1 / 2}\left(1-\lambda_{2 n}^{2}\right)^{1 / 2}\left(z_{n}^{2}-z_{n}^{-2}\right)}=k_{n} \quad n=1, \ldots, M \tag{13}
\end{equation*}
$$

All the $R_{C H_{q}(2)}^{(n)}$ matrices are independent and commute among them. It's remarkable that the spectral curve (13) of irreps that admit an intertwiner is parametrized by M independent elliptic moduli k_{n}. Indeed, some of them can be in the elliptic regime and others in the trigonometric $(k=0)$. The matrix $R_{C H_{q}(2 M)}$ can be thought of as the scattering matrix for objects composed of M different kinds of particles. There is real interaction when two equal particles scatter from each other, given by $R_{C H_{q}(2)}^{(n)}$; otherwise there is only a sign coming from their statistics and represented by the operator B (figure 2).

Figure 2. Graphical representation of the $\mathrm{CH}_{q}(4) R$-matrix.

Finally, note that the R-matrix (12) coincides with the Boltzmann weights for the most general 8 -vertex free-fermionic solution to the Yang-Baxter equation in non-zero magnetic field $[3,4]$.

3. Extended supersymmetry

In order to analyse the connection of $C \widehat{H_{q}(2 M)}$ with supersymmetry algebras, we will study the limit in which the R-matrix (12) becomes trigonometric. Let us consider first the case $D=2$ in detail. This case turns out to be related to an $N=2$ (two supersymmetry charges) integrable Ginzburg-Landau model. We shall also give a heuristic motivation for the construction of the Hopf algebra $\widehat{\mathrm{CH}_{q}(2)}$ based on its trigonometric 6 -vertex limit.

The 6 -vertex free fermionic solutions are given by the intertwiner R-matrix between nilpotent irreps of $U_{\epsilon}(\widehat{s l(2)}), \epsilon^{4}=1(\Rightarrow \epsilon=i)$ [10]. In a $U_{\epsilon=i}(s l(2))$ nilpotent irrep the values of the special Casimirs are $Q_{ \pm}^{2}=0\left(Q_{ \pm}=S_{ \pm} \epsilon^{ \pm H / 2}\right)$ and $K^{2}=\lambda^{2}$ arbitrary ($K=\epsilon^{H}$); namely, they are the highest-weight cases of the cyclic irreps. Furthermore when $\epsilon^{4}=1$ the anticommutator $\left\{Q_{+}, Q_{-}\right\}$also belongs to the centre, suggesting the connection with a Clifford algebra through the mixing of the positive and negative root generators $Q_{ \pm}$. The total fermion number is conserved in the 6-vertex solutions to the Yang-Baxter equation, but it is not in the elliptic regime. Hence a non-trivial mixing is needed to represent the
elliptic regime. The Hopf algebra $C H_{q}(2)$ assigns different central elements $\left[E_{1}\right]_{q},\left[E_{2}\right]_{q}$ to the square of the generators γ_{1}, γ_{2} respectively, in such a way that the mixing can only be undone (trigonometric limit) when $E_{1}=E_{2}=E$. It implies $k=0$ in (13). For the affine $\widehat{C H_{q}(2)}$ this limit leads to $U_{\epsilon=i}(\overline{s l(2)})$ (this statement is only rigurous for the affine case): i.e. $R_{C H_{q}(2)}$ becomes the R-matrix intertwiner for $U_{\epsilon=i}(\widehat{s l(2)})$, provided the labels of the two algebras are related by $\lambda=q^{E}$.

Using the generators $Q_{ \pm}, \bar{Q}_{ \pm} \in U_{\epsilon=i}(\widehat{s l(2)})$, we can define an $N=2$ supersymmetry algebra with topological extension $T_{ \pm}[11,12]$

$$
\begin{align*}
& Q_{ \pm}^{2}=\bar{Q}_{ \pm}^{2}=\left\{Q_{ \pm}, \bar{Q}_{ \pm}\right\}=0 \\
& \left\{Q_{ \pm}, \bar{Q}_{\mp}\right\}=2 T_{ \pm} \quad,\left|T_{ \pm}\right|=[E]_{q} \tag{14}\\
& \left\{Q_{+}, Q_{-}\right\}=2 m z^{2} \quad\left\{\bar{Q}_{+}, \bar{Q}_{-}\right\}=2 m z^{-2}
\end{align*}
$$

satisfying the Bogomolnyi bound $\left|T_{ \pm}\right|=m$. The free fermionic condition (1) ensures the $N=2$ invariance of the R-matrix. Moreover, the $N=2$ part of the scattering matrix for the solitons of the Ginzburg-Landau superpotential $W=X^{n+1} /(n+1)-\beta X[13]$ is given by R-matrices of $U_{\hat{q}}(\widehat{g l(1,1)})$ with $\hat{q}^{2 n}=1$ [14], or equivalently by those of $U_{\epsilon=i}(\widehat{s l(2))}$ between nilpotent irreps with labels $\lambda=\hat{q}$ [15].

The Ginzburg-Landau models have a particular importance in the context of $N=2$ supersymmetry, since they allow one to classify a wide variety of $N=2$ superconformal field theories [16]. Of great interest are the relevant perturbations of these theories giving massive integrable models, as happens for the superpotential $W(X)=X^{n+1} /(n+1)-\beta X$. We would now like to make plausible in this context why the supersymmetry algebra (14) has a non-trivial co-multiplication. In a $N=2$ Ginzburg-Landau model, the superpotential enters explicitly in the SUSY commutators through

$$
\begin{align*}
& \left\{Q_{+}, \bar{Q}_{+}\right\}=\Delta W \quad\left\{Q_{-}, \bar{Q}_{-}\right\}=\Delta W^{*} \\
& \Delta W=W\left(X^{j}\right)-W\left(X^{i}\right) \tag{15}
\end{align*}
$$

with $X(-\infty)=X^{i}, X(\infty)=X^{j}$ and X^{i}, X^{j} minima of W. Let's call $K_{(i, i+l)}$ the soliton going from X^{i} to X^{j}, where $l=j-i$. It is straightforward to see that ΔW depends on both l and i. Naively, the dependence on i was not expected since all the solitons with the same l are equivalent. For the superpotential proposed it is possible to obtain a supersymmetric algebra without this dependence, at the price of re-absorbing it in a non-trivial quantum group comultiplication

$$
\begin{align*}
& \Delta\left(Q_{ \pm}\right)=q^{ \pm E} \gamma_{3} \otimes Q_{ \pm}+Q_{ \pm} \otimes 1 \\
& \Delta\left(\bar{Q}_{ \pm}\right)=q^{\mp E} \gamma_{3} \otimes \bar{Q}_{ \pm}+\bar{Q}_{ \pm} \otimes 1 \tag{16}
\end{align*}
$$

On the other hand, it is worth noting the relation of (16) with the fermion number of the solitons. In the solitonic sectors, the fermion number operator acquires a fractional constant piece due to the interaction of the fermionic degrees of freedom with the solitonic background. The fractional piece of the fermion number in a soliton sector $K_{(i, j)}$, is given by $[17,18]$

$$
\begin{equation*}
f=-\left.\frac{1}{2 \pi}\left(\operatorname{Im} \ln W^{\prime \prime}(X)\right)\right|_{X^{i}} ^{X_{j}^{j}}=\frac{s}{n} \quad s=1, \ldots, n-1 . \tag{17}
\end{equation*}
$$

The relation with $C H_{q}(2)$ labels is $q^{E}=\mathrm{e}^{\mathrm{i} \pi s / n}$. Therefore $q^{ \pm E} \gamma_{3}$ in (16) would be the analogue of $\mathrm{e}^{ \pm i \pi F}$, where F is the fermion number operator. This interpretation fails for $\Delta\left(\bar{Q}_{ \pm}\right)$, where the signs are interchanged, leading, in fact, to a quantum group structure instead of a Lie superalgebra.

Let us return to building extended supersymmetry algebras from the general $\widehat{C} \widehat{H_{q}(2 M)}$, in the same sense as above. The trigonometric limit of $C \widehat{H_{q}(2 M)}$ is obtained as an independent trigonometric limit in each $\widehat{\mathrm{CH}_{q}(2)}$ piece. Then the affine Hopf algebra $C \widehat{H_{q}(2 M)}$ becomes, in essence, the anticommuting tensor product of $M U_{\epsilon=i} \widehat{(s l(2))}$ factors, each with its own spectral parameter. Imposing that the eigenvalues of all the central charges E_{i} and the spectral parameters $z_{i}(i=1, \ldots, M)$ coincide, we get M copies of the same structure (14), $\left\{Q_{ \pm}^{(i)}, \bar{Q}_{ \pm}^{(i)}, T_{ \pm}^{(i)}=T_{ \pm}\right\}_{i=1}^{M}$. Therefore we find an $N^{-}=2 M$ supersymmetry algebra with M topological charges. Indeed, the dimension of a $\widehat{C H_{q}(2)}$ irrep is 2^{M}, as is needed to saturate the Bogomolnyi bound $\left|T_{ \pm}^{(i)}\right|=\left|T_{ \pm}\right|=m$.

Besides, we have seen that the $C \widehat{H_{q}(2 M)}$ irreps can be thought of as collections of M independent solitons $\widehat{\mathrm{CH}_{q}(2)}$. Let us consider the more general trigonometric limit with equal values of the central charges E_{i}, but arbitrary spectral parameters $z_{i}(i=1, \ldots, M)$. Then the charges

$$
\begin{equation*}
Q_{ \pm}^{T}=\sum_{i=1}^{M} Q_{ \pm}^{(i)} \quad \cdot \bar{Q}_{ \pm}^{T}=\sum_{i=1}^{M} \bar{Q}_{ \pm}^{(i)} \tag{18}
\end{equation*}
$$

verify the commutation relations of $N=2$ supersymmetry (14). In fact, (14) is satisfied even if we allow different central charges E_{i}. However, in this case the comultiplication doesn't preserve the expression (18) of $Q_{ \pm}^{T}, \bar{Q}_{ \pm}^{T}$.

4. Generalized $X Y$ spin chains

The quantum group structure plays an important role in two-dimensional statistical models, since R-matrix intertwiners provide systematic solutions to the integrability condition, the Yang-Baxter equation. In this way integrable models can be built associated with a quantum group, allowing one to connect integrability with an underlying symmetry principle. As noted above, the intertwiner R-matrix for the Clifford-Hopf algebra $\widehat{\mathrm{CH}_{q}(2)}$ reproduces the 8 -vertex free-fermion model in magnetic field. In this section we will analyse the model defined by the algebras $\widehat{C H_{q}(D)}$ for general $D=2 M$. Following the transfermatrix method, the study of a two-dimensional statistical model is equivalent to that of its corresponding spin chain. The L-site Hamiltonian for a periodic chain defined by the $C \widehat{H_{q}(2 M)}$ Hopf algebras is given by (provided that $R(0)=1$)

$$
\begin{align*}
& H=\left.\sum_{j=1}^{L} \mathrm{i} \frac{\partial}{\partial u} R_{j, j+1}(u)\right|_{u=0} \tag{19}\\
& H=\sum_{j=1}^{L} \sum_{n=1}^{M .}\left\{\left(J_{x}^{n} \sigma_{x, j}^{n} \sigma_{x, j+1}^{n}+J_{y}^{n} \sigma_{y, j}^{n} \sigma_{y, j+1}^{n}\right) \sigma_{z, j}^{n+1} \ldots \sigma_{z, j}^{M} \sigma_{z, j+1}^{1} \ldots \sigma_{z, j+1}^{n-1}+h^{n} \sigma_{z, j}^{n}\right\}
\end{align*}
$$

where $\sigma_{a}^{n}(a=x, y, z n=1, \ldots, M)$ are M sets of Pauli matrices, and the constants $J_{x}^{n}, J_{y}^{n}, h^{n}$ depend on the quantum labels of the irreps whose intertwiner is R

$$
\begin{array}{lll}
J_{x}^{n}=1+\Gamma^{n} & J_{y}^{n}=1-\Gamma^{n} & n=1, \ldots, M \\
\Gamma^{n}=k_{n} \operatorname{sn}\left(\psi^{n}\right) & h^{n}=2 \operatorname{cn}\left(\psi^{n}\right) . \tag{20}
\end{array}
$$

The requirement $R(0)=1$ implies $\psi_{1}^{n}=\psi_{2}^{n}=\psi^{n}$.
The Hamiltonian (19) can be diagonalized through a Jordan-Wigner transformation and its excitations behave as free fermions (massless when $J_{x}^{n}=J_{y}^{n}$, massive otherwise). This model provides M groups of Pauli matrices $\sigma_{a, j}^{n}(a=x, y, z)$ for each site j on the chain, so it behaves as having M layers with an $X Y$ model defined in each layer. The factors ($\sigma_{z, j}^{k+1} \ldots \sigma_{z, j}^{M} \sigma_{z, j+1}^{1} \ldots \sigma_{z, j+1}^{k-1}$) make the fermionic excitations on different layers anticommute. Thus the algebra $C \widehat{H_{q}(2 M)}$ provides a way to put different non-interacting fermions in a chain with a quantum group interpretation.

When $M=1, H$ reduces to the Hamiltonian of an $X Y$ Heisenberg chain in an external magnetic field h, that is the spin chain associated with the 8 -vertex free-fermion model [7]:

$$
\begin{equation*}
H=\sum_{j=1}^{L}\left\{J_{x} \sigma_{x, j} \sigma_{x, j+1}+J_{y} \sigma_{y, j} \sigma_{y, j+1}+h \sigma_{z, j}\right\} \tag{21}
\end{equation*}
$$

The aim of this section is to show that the above model is equivalent under some restrictions to the generalized integrable $X Y$ chain proposed and solved in [9],

$$
\begin{equation*}
\tilde{H}=-\sum_{k=1}^{K} \sum_{j=1}^{L^{\prime}}\left(\tilde{J}_{x}^{k} \sigma_{x, j} \sigma_{x, j+k}+\tilde{J}_{y}^{k} \sigma_{y, j} \sigma_{y, j+k}\right) \sigma_{z, j+1} \ldots \sigma_{z, j+k-1}+h \sum_{j=1}^{L^{\prime}} \sigma_{z, j} \tag{22}
\end{equation*}
$$

finding in this way a quantum group structure for this integrable model. The Hamiltonian (22) can also be diagonalized with a Jordan-Wigner transformation and its quasi-particles behave as free fermions. The main application of the generalized $X Y$ model is the problem of covering a surface with horizontal and vertical dimers. Indeed, the ground state of \widetilde{H} for a particular choice of parameters reproduces the two-dimensional pure dimer problem [9], first solved in terms of a Pfaffian [19].

To see the relation between H and \tilde{H}, let us choose identical $X Y$ models on each layer of the former chain

$$
\begin{equation*}
J_{x}^{n}=J_{x} \quad J_{y}^{n}=J_{y} \quad h^{n}=h \quad n=1, \ldots, M \tag{23}
\end{equation*}
$$

and rearrange the spin labels to form a single-layer chain

$$
\begin{equation*}
\sigma_{a, j}^{n}=\sigma_{a, j+n} \quad n=1, \ldots, M \quad a=x, y, z \tag{24}
\end{equation*}
$$

Then the Hamiltonians H and \widetilde{H} coincide if in the latter we set

$$
\begin{equation*}
\tilde{J}_{x}^{k}=-J_{x} \delta_{M, k} \quad \tilde{J}_{y}^{k}=-J_{y} \delta_{M, k} \quad k=1, \ldots, K \tag{25}
\end{equation*}
$$

The general $\tilde{H}(22)$ is obtained by adding Hamiltonians $H^{(M)}$ derived from $C \widehat{H_{q}(2 M)}$ R-matrices. The fact that this sum is also solvable relies on setting equal parameters in each $H^{(M)}$ (this is the same condition that leads to $N=2 M$ supersymmetry in the trigonometric limit of $\left.C \widehat{H_{q}(2 M)}\right)$. Therefore, the affine quantum Clifford-Hopf algebras $C \widehat{H_{q}(2 M)}$ encode the hidden quantum group for the generalized $X Y$ spin chain (22).

5. Comments

We have studied the quantum Clifford algebras $C \widehat{H_{q}(2 M)}$ in connection with eintended supersymmetry and with statistical integrable models.

It is worth noting that the Hamiltonian derived from $\widehat{\mathrm{CH}_{q}(4)}$ in the trigonometric regime and without magnetic field is the limiting case $U \rightarrow \infty$ of the two-layer chain [8]:
$H=-\frac{1}{2} \sum_{j=1}^{L}\left\{\left(\sigma_{x}^{j} \sigma_{x}^{j+1}+\sigma_{y}^{j} \sigma_{y}^{j+1}\right)\left(1-U \tau_{z}^{j+1}\right)+\left(\tau_{x}^{j} \tau_{x}^{j+1}+\tau_{y}^{j} \tau_{y}^{j+1}\right)\left(1-U \sigma_{z}^{j}\right)\right\}$.
The coupling between the two layers in this model implies real interaction, so the excitations are not free fermions, and the ground state presents spontaneous magnetization (if $U \neq 0, \infty)$. It can still be solved by Bethe ansatz techniques, but an R-matrix interpretation for it is not known. The algebra $\widehat{\mathrm{CH}_{q}(4)}$ gives us a simple way of coupling two $X Y$ models. Perhaps it would be possible to twist (may be in a way related to a quantum deformation proposed recently for the Clifford algebras [20]) and break the full set of generators to a shorter set giving a quantum group structure for this model.

We have built extended supersymmetric algebras from the $C \widehat{H_{q}(2 M)}$ generators in the trigonometric limit. The Clifford-Hopf algebras can be thought of as elliptic generalizations of supersymmetry (the anticommutators of charges that give the momentum P and \bar{P} get deformed in the elliptic case, but are still central elements). It would be interesting to analyse what deformation of the Poincaré group one gets in such a way.

Acknowledgments

The author would like to thank A Berkovich, R Cuerno, C Gomez and G Sierra for discussions and encouragement. This work is supported by MEC fellowship AP91 34090983.

References

[1] Baxter R J 1982 Exactly Solved Models In Statistical Mechanics (New York: Academic)
[2] Fan C and Wu F Y 1970 Phys. Rev. B 2723
[3] Felderhof B U 1973 Physica 66279
[4] Bazhanov V V and Stroganov Yu G 1985 Teor. Mat. Fiz, 62337
[5] Cuerno R, Gómez C, López E and Sierra G 1993 Phys. Lett. 307B 56
[6] Drinfeld V G 1989 Quasi-Hopf algebras and Knizhnik-Zamolodchikov equations Preprint ITP-89-43B
[7] Lieb E H, Schultz T D and Mattis D C 1961 Ann. Phys., NY 16407
[8] Bariev R Z 1991 J. Phys. A: Math. Gen. 24 L549
[9] Suzuki M 1971 Prog. Theor. Phys. 46 1337; 1971 Phys. Lett. 34A. 338
[10] Berkovich A, Gómez C and Sierra G 1993 Spin-anisotropy commensurable chains: Quantum group symmetries and $N=2$ susy Preprint IMAFF-93-1; 1994 Nucl. Phys. B to appear
[11] Bernard D and LeClair A 1990 Phys. Lett. 247B 309
[12] LeClair A and Vafa C 1992 Quantum affine symmetry as generalized supersymmetry Preprint HUTP. .92/A045
[13] Fendley P and Intriligator K 1992 Nucl. Phys. B 380265
[14] Rozansky L and Saleur H 1992 Nucl. Phys. B 376461
Kauffman L H and Saleur H 1991 Commun. Math. Phys, 141293
[15] Murakami J 1992 Int. J. Mod. Phys. A 7 Suppl. 1B 765
[16] Vafa C ann Wamer N P 1989 Phys. Lett. 218B 51
[17] Fendley P and Intriligator K 1992 Nucl. Phys. B 372533
[18] Goldstone J and Wilczek F 1981 Phys. Rev. Lett. 47986 Niemi A J and Semenoff G W 1986 Phys. Rep. 13599
[19] Kasteleyn P W 1962 Physica 27 1209; 1963 J. Math. Phys. 4287
[20] Brzezinsky T, Papaloucas L C and Rembielinski I 1993 Quantum clifford algebras Preprint HEP-TH/9306061

